RTC 也就是实时时钟,用于记录当前系统时间,对于 Linux 系统而言时间是非常重要的,就和我们使用 Windows 电脑或手机查看时间一样,我们在使用 Linux 设备的时候也需要查看时间。本章我们就来学习一下如何编写 Linux 下的 RTC 驱动程序。
1. RTC驱动简介
RTC 设备驱动是一个标准的字符设备驱动,应用程序通过 open、 release、 read、 write 和 ioctl等函数完成对 RTC 设备的操作。一般开发板上都有个纽扣电池位rtc设备供电,在芯片掉电以后使rtc设备可以继续运行。下图为I.MX6U-ALPHA开发板上的纽扣电池。
Linux 内核将 RTC 设备抽象为 rtc_device 结构体,因此 RTC 设备驱动就是申请并初始化rtc_device,最后将 rtc_device 注册到 Linux 内核里面,这样 Linux 内核就有一个 RTC 设备了。
至于 RTC 设备的操作肯定是用一个操作集合(结构体)来表示的,我们先来看一下 rtc_device 结构体,此结构体定义在 include/linux/rtc.h 文件中,结构体内容如下(删除条件编译):
// 示例代码 rtc_device 结构体
104 struct rtc_device
105 {
106 struct device dev; /* 设备 */
107 struct module *owner;
108
109 int id; /* ID */
110 char name[RTC_DEVICE_NAME_SIZE]; /* 名字 */
111
112 const struct rtc_class_ops *ops; /* RTC 设备底层操作函数 */
113 struct mutex ops_lock;
114
115 struct cdev char_dev; /* 字符设备 */
116 unsigned long flags;
117
118 unsigned long irq_data;
119 spinlock_t irq_lock;
120 wait_queue_head_t irq_queue;
121 struct fasync_struct *async_queue;
122
123 struct rtc_task *irq_task;
124 spinlock_t irq_task_lock;
125 int irq_freq;
126 int max_user_freq;
127
128 struct timerqueue_head timerqueue;
129 struct rtc_timer aie_timer;
130 struct rtc_timer uie_rtctimer;
131 struct hrtimer pie_timer; /* sub second exp, so needs hrtime
132 int pie_enabled;
133 struct work_struct irqwork;
134 /* Some hardware can't support UIE mode */
135 int uie_unsupported;
......
};
我们需要重点关注的是 ops 成员变量,这是一个 rtc_class_ops 类型的指针变量, rtc_class_ops为 RTC 设备的最底层操作函数集合,包括从 RTC 设备中读取时间、向 RTC 设备写入新的时间值等。因此, rtc_class_ops 是需要用户根据所使用的 RTC 设备编写的,此结构体定义在include/linux/rtc.h 文件中,内容如下:
// 示例代码 rtc_class_ops 结构体
71 struct rtc_class_ops {
72 int (*open)(struct device *);
73 void (*release)(struct device *);
74 int (*ioctl)(struct device *, unsigned int, unsigned long);
75 int (*read_time)(struct device *, struct rtc_time *);
76 int (*set_time)(struct device *, struct rtc_time *);
77 int (*read_alarm)(struct device *, struct rtc_wkalrm *);
78 int (*set_alarm)(struct device *, struct rtc_wkalrm *);
79 int (*proc)(struct device *, struct seq_file *);
80 int (*set_mmss64)(struct device *, time64_t secs);
81 int (*set_mmss)(struct device *, unsigned long secs);
82 int (*read_callback)(struct device *, int data);
83 int (*alarm_irq_enable)(struct device *, unsigned int enabled);
84 };
看名字就知道 rtc_class_ops 操作集合中的这些函数是做什么的了,但是我们要注意,rtc_class_ops 中的这些函数只是最底层的 RTC 设备操作函数,并不是提供给应用层的file_operations 函数操作集。 RTC 是个字符设备,那么肯定有字符设备的 file_operations 函数操
作集, Linux 内核提供了一个 RTC 通用字符设备驱动文件,文件名为 drivers/rtc/rtc-dev.c, rtcdev.c 文件提供了所有 RTC 设备共用的 file_operations 函数操作集,如下所示:
// 示例代码 RTC 通用 file_operations 操作集
448 static const struct file_operations rtc_dev_fops = {
449 .owner = THIS_MODULE,
450 .llseek = no_llseek,
451 .read = rtc_dev_read,
452 .poll = rtc_dev_poll,
453 .unlocked_ioctl = rtc_dev_ioctl,
454 .open = rtc_dev_open,
455 .release = rtc_dev_release,
456 .fasync = rtc_dev_fasync,
457 };
应用程序可以通过 ioctl 函数来设置/读取时间、设置/读取闹钟的操作,那么对应的 rtc_dev_ioctl 函数就会执行,rtc_dev_ioctl 最终会通过操作 rtc_class_ops 中的 read_time、 set_time 等函数来对具体 RTC 设备的读写操作。我们简单来看一下 rtc_dev_ioctl 函数,函数内容如下(有省略):
// 示例代码 rtc_dev_ioctl 函数代码段
218 static long rtc_dev_ioctl(struct file *file,
219 unsigned int cmd, unsigned long arg)
220 {
221 int err = 0;
222 struct rtc_device *rtc = file->private_data;
223 const struct rtc_class_ops *ops = rtc->ops;
224 struct rtc_time tm;
225 struct rtc_wkalrm alarm;
226 void __user *uarg = (void __user *) arg;
227
228 err = mutex_lock_interruptible(&rtc->ops_lock);
229 if (err)
230 return err;
......
269 switch (cmd) {
......
333 case RTC_RD_TIME: /* 读取时间 */
334 mutex_unlock(&rtc->ops_lock);
335
336 err = rtc_read_time(rtc, &tm);
337 if (err < 0)
338 return err;
339
340 if (copy_to_user(uarg, &tm, sizeof(tm)))
341 err = -EFAULT;
342 return err;
343
344 case RTC_SET_TIME: /* 设置时间 */
345 mutex_unlock(&rtc->ops_lock);
346
347 if (copy_from_user(&tm, uarg, sizeof(tm)))
348 return -EFAULT;
349
350 return rtc_set_time(rtc, &tm);
......
401 default:
402 /* Finally try the driver's ioctl interface */
403 if (ops->ioctl) {
404 err = ops->ioctl(rtc->dev.parent, cmd, arg);
405 if (err == -ENOIOCTLCMD)
406 err = -ENOTTY;
407 } else
408 err = -ENOTTY;
409 break;
410 }
411
412 done:
413 mutex_unlock(&rtc->ops_lock);
414 return err;
415 }
第 333 行, RTC_RD_TIME 为时间读取命令。
第 336 行,如果是读取时间命令的话就调用 rtc_read_time
函数获取当前 RTC 时钟,rtc_read_time
函数, rtc_read_time
会调用__rtc_read_time
函数, __rtc_read_time
函数内容如下:
// 示例代码 __rtc_read_time 函数代码段
23 static int __rtc_read_time(struct rtc_device *rtc,
struct rtc_time *tm)
24 {
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 if (err < 0) {
34 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 err);
36 return err;
37 }
38
39 err = rtc_valid_tm(tm);
40 if (err < 0)
41 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 }
43 return err;
44 }
从示例代码 中的 32 行可以看出, __rtc_read_time
函数会通过调用 rtc_class_ops
中的read_time 来从 RTC 设备中获取当前时间。 rtc_dev_ioctl
函数对其他的命令处理都是类似的,比如 RTC_ALM_READ 命令会通过 rtc_read_alarm
函数获取到闹钟值,而 rtc_read_alarm
函数经过层层调用,最终会调用 rtc_class_ops
中的 read_alarm 函数来获取闹钟值。
至此, Linux 内核中 RTC 驱动调用流程就很清晰了,如下图所示:
当 rtc_class_ops
准备好以后需要将其注册到 Linux 内核中,这里我们可以使用rtc_device_register
函数完成注册工作。此函数会申请一个rtc_device
并且初始化这个rtc_device
,最后向调用者返回这个 rtc_device
,此函数原型如下:
struct rtc_device *rtc_device_register(const char *name,
struct device *dev,
const struct rtc_class_ops *ops,
struct module *owner)
函数参数和返回值含义如下:
name:设备名字。
dev: 设备。
ops: RTC 底层驱动函数集。
owner:驱动模块拥有者。
返回值: 注册成功的话就返回 rtc_device,错误的话会返回一个负值。
当卸载 RTC 驱动的时候需要调用 rtc_device_unregister 函数来注销注册的 rtc_device,函数原型如下:
void rtc_device_unregister(struct rtc_device *rtc)
函数参数和返回值含义如下:
rtc:要删除的 rtc_device。
返回值: 无。
还有另外一对 rtc_device 注册函数 devm_rtc_device_register 和 devm_rtc_device_unregister,分别为注册和注销 rtc_device。
2. I.MX6U 内部 RTC 驱动分析
先直接告诉大家, I.MX6U 的 RTC 驱动我们不用自己编写,因为 NXP 已经写好了。其实对于大多数的 SOC 来讲,内部 RTC 驱动都不需要我们去编写,半导体厂商会编写好。但是这不代表我们就偷懒了,虽然不用编写 RTC 驱动,但是我们得看一下这些原厂是怎么编写 RTC 驱动的。
分析驱动,先从设备树入手,打开 imx6ull.dtsi,在里面找到如下 snvs_rtc 设备节点,节点内容如下所示:
示例代码 60.2.1 imx6ull.dtsi 文件 rtc 设备节点
1 snvs_rtc: snvs-rtc-lp {
2 compatible = "fsl,sec-v4.0-mon-rtc-lp";
3 regmap = <&snvs>;
4 offset = <0x34>;
5 interrupts = <GIC_SPI 19 IRQ_TYPE_LEVEL_HIGH>, <GIC_SPI 20
IRQ_TYPE_LEVEL_HIGH>;
6 };
第 2 行设置兼容属性 compatible 的值为“fsl,sec-v4.0-mon-rtc-lp”,因此在 Linux 内核源码中搜索此字符串即可找到对应的驱动文件,此文件为 drivers/rtc/rtc-snvs.c,在 rtc-snvs.c 文件中找到如下所示内容:
//示例代码 rtc 设备 platform 驱动框架
380 static const struct of_device_id snvs_dt_ids[] = {
381 { .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
382 { /* sentinel */ }
383 };
384 MODULE_DEVICE_TABLE(of, snvs_dt_ids);
385
386 static struct platform_driver snvs_rtc_driver = {
387 .driver = {
388 .name = "snvs_rtc",
389 .pm = SNVS_RTC_PM_OPS,
390 .of_match_table = snvs_dt_ids,
391 },
392 .probe = snvs_rtc_probe,
393 };
394 module_platform_driver(snvs_rtc_driver);
第 380~383 行,设备树 ID 表,有一条 compatible 属性,值为“fsl,sec-v4.0-mon-rtc-lp”,因此 imx6ull.dtsi 中的 snvs_rtc 设备节点会和此驱动匹配。
第 386~393 行,标准的 platform 驱动框架,当设备和驱动匹配成功以后 snvs_rtc_probe 函数就会执行。我们来看一下 snvs_rtc_probe 函数,函数内容如下(有省略):
示例代码 60.2.3 snvs_rtc_probe 函数代码段
238 static int snvs_rtc_probe(struct platform_device *pdev)
239 {
240 struct snvs_rtc_data *data;
241 struct resource *res;
242 int ret;
243 void __iomem *mmio;
244
245 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
246 if (!data)
247 return -ENOMEM;
248
249 data->regmap =
syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap");
250
251 if (IS_ERR(data->regmap)) {
252 dev_warn(&pdev->dev, "snvs rtc: you use old dts file,
please update it\n");
253 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
254
255 mmio = devm_ioremap_resource(&pdev->dev, res);
256 if (IS_ERR(mmio))
257 return PTR_ERR(mmio);
258
259 data->regmap = devm_regmap_init_mmio(&pdev->dev, mmio,
&snvs_rtc_config);
260 } else {
261 data->offset = SNVS_LPREGISTER_OFFSET;
262 of_property_read_u32(pdev->dev.of_node, "offset", &data->offset);
263 }
264
265 if (!data->regmap) {
266 dev_err(&pdev->dev, "Can't find snvs syscon\n");
267 return -ENODEV;
268 }
269
270 data->irq = platform_get_irq(pdev, 0);
271 if (data->irq < 0)
272 return data->irq;
......
285
286 platform_set_drvdata(pdev, data);
287
288 /* Initialize glitch detect */
289 regmap_write(data->regmap, data->offset + SNVS_LPPGDR,
SNVS_LPPGDR_INIT);
290
291 /* Clear interrupt status */
292 regmap_write(data->regmap, data->offset + SNVS_LPSR,
0xffffffff);
293
294 /* Enable RTC */
295 snvs_rtc_enable(data, true);
296
297 device_init_wakeup(&pdev->dev, true);
298
299 ret = devm_request_irq(&pdev->dev, data->irq,
snvs_rtc_irq_handler,
300 IRQF_SHARED, "rtc alarm", &pdev->dev);
301 if (ret) {
302 dev_err(&pdev->dev, "failed to request irq %d: %d\n",
303 data->irq, ret);
304 goto error_rtc_device_register;
305 }
306
307 data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
308 &snvs_rtc_ops, THIS_MODULE);
309 if (IS_ERR(data->rtc)) {
310 ret = PTR_ERR(data->rtc);
311 dev_err(&pdev->dev, "failed to register rtc: %d\n", ret);
312 goto error_rtc_device_register;
313 }
314
315 return 0;
316
317 error_rtc_device_register:
318 if (data->clk)
319 clk_disable_unprepare(data->clk);
320
321 return ret;
322 }
第 253 行,调用 platform_get_resource 函数从设备树中获取到 RTC 外设寄存器基地址。
第 255 行,调用函数 devm_ioremap_resource 完成内存映射,得到 RTC 外设寄存器物理基
地址对应的虚拟地址。
第 259 行, Linux3.1 引入了一个全新的 regmap 机制, regmap 用于提供一套方便的 API 函
数去操作底层硬件寄存器,以提高代码的可重用性。 snvs-rtc.c 文件会采用 regmap 机制来读写
RTC 底层硬件寄存器。这里使用 devm_regmap_init_mmio 函数将 RTC 的硬件寄存器转化为
regmap 形式,这样 regmap 机制的 regmap_write、 regmap_read 等 API 函数才能操作寄存器。
第 270 行,从设备树中获取 RTC 的中断号。
第 289 行,设置 RTC_LPPGDR
寄存器值为 SNVS_LPPGDR_INIT= 0x41736166
,这里就是用的 regmap 机制的 regmap_write
函数完成对寄存器进行写操作。
第 292 行,设置 RTC_LPSR
寄存器,写入 0xffffffff, LPSR 是 RTC 状态寄存器,写 1 清零,因此这一步就是清除 LPSR 寄存器。
第 295 行,调用 snvs_rtc_enable
函数使能 RTC,此函数会设置 RTC_LPCR
寄存器。
第299行,调用devm_request_irq
函数请求RTC中断,中断服务函数为snvs_rtc_irq_handler
,用于 RTC 闹钟中断。
第 307 行,调用 devm_rtc_device_register
函数向系统注册 rtc_devcie
, RTC 底层驱动集为snvs_rtc_ops
。snvs_rtc_ops操作集包含了读取/设置RTC时间,读取/设置闹钟等函数。snvs_rtc_ops内容如下:
// 示例代码 snvs_rtc_ops 操作集
200 static const struct rtc_class_ops snvs_rtc_ops = {
201 .read_time = snvs_rtc_read_time,
202 .set_time = snvs_rtc_set_time,
203 .read_alarm = snvs_rtc_read_alarm,
204 .set_alarm = snvs_rtc_set_alarm,
205 .alarm_irq_enable = snvs_rtc_alarm_irq_enable,
206 };
我们就以第 201 行的 snvs_rtc_read_time 函数为例讲解一下 rtc_class_ops 的各个 RTC 底层操作函数该如何去编写。 snvs_rtc_read_time 函数用于读取 RTC 时间值,此函数内容如下所示:
// 示例代码 snvs_rtc_read_time 函数代码段
126 static int snvs_rtc_read_time(struct device *dev,
struct rtc_time *tm)
127 {
128 struct snvs_rtc_data *data = dev_get_drvdata(dev);
129 unsigned long time = rtc_read_lp_counter(data);
130
131 rtc_time_to_tm(time, tm);
132
133 return 0;
134 }
第 129 行,调用 rtc_read_lp_counter
获取 RTC 计数值,这个时间值是秒数。
第 131 行,调用 rtc_time_to_tm
函数将获取到的秒数转换为时间值,也就是 rtc_time
结构体类型, rtc_time 结构体定义如下:
示例代码 rtc_time 结构体类型
20 struct rtc_time {
21 int tm_sec;
22 int tm_min;
23 int tm_hour;
24 int tm_mday;
25 int tm_mon;
26 int tm_year;
27 int tm_wday;
28 int tm_yday;
29 int tm_isdst;
30 };
最后我们来看一下 rtc_read_lp_counter 函数,此函数用于读取 RTC 计数值,函数内容如下(有省略):
示例代码 60.2.7 rtc_read_lp_counter 函数代码段
50 static u32 rtc_read_lp_counter(struct snvs_rtc_data *data)
51 {
52 u64 read1, read2;
53 u32 val;
54
55 do {
56 regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &val);
57 read1 = val;
58 read1 <<= 32;
59 regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &val);
60 read1 |= val;
61
62 regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &val);
63 read2 = val;
64 read2 <<= 32;
65 regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &val);
66 read2 |= val;
67 /*
68 * when CPU/BUS are running at low speed, there is chance that
69 * we never get same value during two consecutive read, so here
70 * we only compare the second value.
71 */
72 } while ((read1 >> CNTR_TO_SECS_SH) != (read2 >> CNTR_TO_SECS_SH));
73
74 /* Convert 47-bit counter to 32-bit raw second count */
75 return (u32) (read1 >> CNTR_TO_SECS_SH);
76 }
第 56~72 行,读取 RTC_LPSRTCMR 和 RTC_LPSRTCLR 这两个寄存器,得到 RTC 的计数值,单位为秒,这个秒数就是当前时间。这里读取了两次 RTC 计数值,因为要读取两个寄存器,因此可能存在读取第二个寄存器的时候时间数据更新了,导致时间不匹配,因此这里连续读两次,如果两次的时间值相等那么就表示时间数据有效。
第 75 行,返回时间值,注意这里将前面读取到的 RTC 计数值右移了 15 位。
这个就是 snvs_rtc_read_time 函数读取 RTC 时间值的过程,至于其他的底层操作函数大家自行分析即可,都是大同小异的,这里就不再分析了。关于 I.MX6U 内部 RTC 驱动源码就讲解到这里。
3. RTC 时间查看与设置
1、时间 RTC 查看
RTC 是用来计时的,因此最基本的就是查看时间, Linux 内核启动的时候可以看到系统时钟设置信息,如下图所示:
从图中可以看出, Linux 内核在启动的时候将 snvs_rtc 设置为 rtc0。
如果要查看时间的话输入“date”命令即可,结果如图所示:
可以看出,当前时间为 1970 年 1 月 1 日 00:06:11,很明显是时间不对,我们需要重新设置 RTC 时间。
2、设置 RTC 时间
RTC 时间设置也是使用的 date 命令,输入“date --help”命令即可查看 date 命令如何设置系统时间,结果如图所示:
现在我要设置当前时间为 2019 年 8 月 31 日 18:13:00,因此输入如下命令:
date -s "2019-08-31 18:13:00"
设置完成以后再次使用 date 命令查看一下当前时间就会发现时间改过来了,如图所示:
大家注意我们使用“ date -s”命令仅仅是将当前系统时间设置了,此时间还没有写入到I.MX6U 内部 RTC 里面或其他的 RTC 芯片里面,因此系统重启以后时间又会丢失。我们需要将当前的时间写入到 RTC 里面,这里要用到 hwclock 命令,输入如下命令将系统时间写入到 RTC里面:
hwclock -w //将当前系统时间写入到 RTC 里面
时间写入到 RTC 里面以后就不怕系统重启以后时间丢失了,如果 I.MX6U-ALPHA 开发板底板接了纽扣电池,那么开发板即使断电了时间也不会丢失。大家可以尝试一下不断电重启和断电重启这两种情况下开发板时间会不会丢失。
评论