[正点原子]Linux驱动学习笔记--8.Linux并发与竞争实验

adtxl
2022-10-22 / 0 评论 / 378 阅读 / 正在检测是否收录...

1. 实验目的

编写内核代码或驱动代码时需要留意共享资源的保护,防止共享资源被并发访问。所谓并发访问,是指多个内核路径同时访问和操作数据,就有可能发生相互覆盖共享数据的情况,造成被访问数据的不一致。内核路径可以是一个内核执行路径、中断处理程序或者内核线程等。并发访问可能会造成系统不稳定或产生错误,且很难跟踪和调试。

在计算机术语中,临界区是指访问和操作共享数据的代码段,其中的资源无法同时被多个执行线程访问,访问临界区的执行线程或代码路径称为并发源。为了避免访问临界区,开发者必须保证访问临界区的原子性,即在临界区内不能有多个并发源同时执行,整个临界区就像一个不可分割的整体。

本章主要是学习和了解如何在Linux驱动中处理并发。

2. 常见的保护机制

Linux提供了多种并发访问的保护机制,如原子操作、自旋锁、信号量、互斥锁、读写锁、RCU等。

2.1 原子操作

原子操作是指保证指令以原子的方式执行,执行过程不会被打断。一般原子操作用于变量或者位操作。

2.1.1 原子整型操作API函数

Linux 内核定义了叫做 atomic_t 的结构体来完成整形数据的原子操作,在使用中用原子变量来代替整型变量,此结构体定义在 include/linux/types.h 文件中,定义如下:

typedef struct {
    int counter;
} atomic_t;

如果要使用原子操作 API 函数,首先要先定义一个atomic_t的变量,如下所示:

atomic_t a; //定义 a

也可以在定义原子变量的时候给原子变量赋初值,如下所示:

atomic_t b = ATOMIC_INIT(0); //定义原子变量 b 并赋初值为 0

可以通过宏 ATOMIC_INIT 向原子变量赋初值。
原子变量有了,接下来就是对原子变量进行操作,比如读、写、增加、减少等等, Linux 内核提供了大量的原子操作 API 函数,如表 47.2.2.1 所示:

函数描述
ATOMIC_INIT(int i) 定义原子变量的时候对其初始化。
int atomic_read(atomic_t *v)读取 v 的值,并且返回。
void atomic_set(atomic_t *v, int i)向 v 写入 i 值。
void atomic_add(int i, atomic_t *v)给 v 加上 i 值。
void atomic_sub(int i, atomic_t *v)从 v 减去 i 值。
void atomic_inc(atomic_t *v)给 v 加 1,也就是自增。
void atomic_dec(atomic_t *v)从 v 减 1,也就是自减
int atomic_dec_return(atomic_t *v)从 v 减 1,并且返回 v 的值。
int atomic_inc_return(atomic_t *v)给 v 加 1,并且返回 v 的值。
int atomic_sub_and_test(int i, atomic_t *v)从 v 减 i,如果结果为 0 就返回真,否则返回假
int atomic_dec_and_test(atomic_t *v)从 v 减 1,如果结果为 0 就返回真,否则返回假
int atomic_inc_and_test(atomic_t *v)给 v 加 1,如果结果为 0 就返回真,否则返回假
int atomic_add_negative(int i, atomic_t *v) 给 v 加 i,如果结果为负就返回真,否则返回假

如果使用 64 位的 SOC 的话,就要用到 64 位的原子变量, Linux 内核也定义了 64 位原子
结构体,如下所示:

typedef struct {
    long long counter;
} atomic64_t;

相应的也提供了 64 位原子变量的操作 API 函数,这里我们就不详细讲解了,和上表中的 API 函数有用法一样,只是将atomic_前缀换为atomic64_,将 int 换为 long long。如果使用的是 64 位的 SOC,那么就要使用 64 位的原子操作函数。 Cortex-A7 是 32 位的架构,所以本书中只使用表 中的 32 位原子操作函数。原子变量和相应的 API 函数使用起来很简单,参考如下示例:

atomic_t v = ATOMIC_INIT(0); /* 定义并初始化原子变零 v=0 */
atomic_set(&v, 10); /* 设置 v=10 */
atomic_read(&v); /* 读取 v 的值,肯定是 10 */
atomic_inc(&v); /* v 的值加 1, v=11 */

2.1.2 原子位操作API函数

位操作也是很常用的操作, Linux 内核也提供了一系列的原子位操作 API 函数,只不过原子位操作不像原子整形变量那样有个 atomic_t 的数据结构,原子位操作是直接对内存进行操作,

函数描述
void set_bit(int nr, void *p)将 p 地址的第 nr 位置 1。
void clear_bit(int nr,void *p)将 p 地址的第 nr 位清零。
void change_bit(int nr, void *p)将 p 地址的第 nr 位进行翻转。
int test_bit(int nr, void *p)获取 p 地址的第 nr 位的值。
int test_and_set_bit(int nr, void *p)将 p 地址的第 nr 位置 1,并且返回 nr 位原来的值。
int test_and_clear_bit(int nr, void *p)将 p 地址的第 nr 位清零,并且返回 nr 位原来的值。
int test_and_change_bit(int nr, void *p)将 p 地址的第 nr 位翻转,并且返回 nr 位原来的值。

2.2 自旋锁

2.2.1 自旋锁简介

原子操作只能对整形变量或者位进行保护,但是,在实际的使用环境中怎么可能只有整形变量或位这么简单的临界区。举个最简单的例子,设备结构体变量就不是整型变量,我们对于结构体中成员变量的操作也要保证原子性,在线程 A 对结构体变量使用期间,应该禁止其他的线程来访问此结构体变量,这些工作原子操作都不能胜任,需要本节要讲的锁机制,在 Linux内核中就是自旋锁。

当一个线程要访问某个共享资源的时候首先要先获取相应的锁, 锁只能被一个线程持有,只要此线程不释放持有的锁,那么其他的线程就不能获取此锁。对于自旋锁而言,如果自旋锁正在被线程 A 持有,线程 B 想要获取自旋锁,那么线程 B 就会处于忙循环-旋转-等待状态,线程 B 不会进入休眠状态或者说去做其他的处理,而是会一直傻傻的在那里“转圈圈”的等待锁可用。

比如现在有个公用电话亭,一次肯定只能进去一个人打电话,现在电话亭里面有人正在打电话,相当于获得了自旋锁。此时你到了电话亭门口,因为里面有人,所以你不能进去打电话,相当于没有获取自旋锁,这个时候你肯定是站在原地等待,你可能因为无聊的等待而转圈圈消遣时光,反正就是哪里也不能去,要一直等到里面的人打完电话出来。终于,里面的人打完电话出来了,相当于释放了自旋锁,这个时候你就可以使用电话亭打电话了,相当于获取到了自旋锁。

自旋锁的“自旋”也就是“原地打转”的意思,“原地打转”的目的是为了等待自旋锁可以用,可以访问共享资源。把自旋锁比作一个变量 a,变量 a=1 的时候表示共享资源可用,当 a=0的时候表示共享资源不可用。现在线程 A 要访问共享资源,发现 a=0(自旋锁被其他线程持有),那么线程 A 就会不断的查询 a 的值,直到 a=1。从这里我们可以看到自旋锁的一个缺点:那就等待自旋锁的线程会一直处于自旋状态,这样会浪费处理器时间,降低系统性能,所以自旋锁的持有时间不能太长。所以自旋锁适用于短时期的轻量级加锁,如果遇到需要长时间持有锁的场景那就需要换其他的方法了,这个我们后面会讲解。

Linux 内核使用结构体 spinlock_t 表示自旋锁,结构体定义如下所示:

64 typedef struct spinlock {
65         union {
66             struct raw_spinlock rlock;
67
68 #ifdef CONFIG_DEBUG_LOCK_ALLOC
69 # define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))
70             struct {
71                 u8 __padding[LOCK_PADSIZE];
72                 struct lockdep_map dep_map;
73             };
74 #endif
75         };
76 } spinlock_t;

在使用自旋锁之前,肯定要先定义一个自旋锁变量,定义方法如下所示:

spinlock_t lock; //定义自旋锁

定义好自旋锁变量以后就可以使用相应的 API 函数来操作自旋锁。

2.2.2 自旋锁API函数

最基本的自旋锁 API 函数如下表所示:

函数描述
DEFINE_SPINLOCK(spinlock_t lock)定义并初始化一个自选变量。
int spin_lock_init(spinlock_t *lock)初始化自旋锁。
void spin_lock(spinlock_t *lock)获取指定的自旋锁,也叫做加锁。
void spin_unlock(spinlock_t *lock)释放指定的自旋锁。
int spin_trylock(spinlock_t *lock)尝试获取指定的自旋锁,如果没有获取到就返回 0
int spin_is_locked(spinlock_t *lock)检查指定的自旋锁是否被获取,如果没有被获取就返回非 0,否则返回 0。

上表中的自旋锁API 函数适用于SMP或支持抢占的单CPU下线程之间的并发访问,也就是用于线程与线程之间,被自旋锁保护的临界区一定不能调用任何能够引起睡眠和阻塞的API 函数,否则的话会可能会导致死锁现象的发生。自旋锁会自动禁止抢占,也就说当线程 A得到锁以后会暂时禁止内核抢占。如果线程 A 在持有锁期间进入了休眠状态,那么线程 A 会自动放弃 CPU 使用权。线程 B 开始运行,线程 B 也想要获取锁,但是此时锁被 A 线程持有,而且内核抢占还被禁止了!线程 B 无法被调度出去,那么线程 A 就无法运行,锁也就无法释放,好了,死锁发生了!

上表中的 API 函数用于线程之间的并发访问,如果此时中断也要插一脚,中断也想访问共享资源,那该怎么办呢?首先可以肯定的是,中断里面可以使用自旋锁,但是在中断里面使用自旋锁的时候,在获取锁之前一定要先禁止本地中断(也就是本 CPU 中断,对于多核 SOC
来说会有多个 CPU 核),否则可能导致锁死现象的发生,如图 47.3.2.1 所示:

image.png

在图 47.3.2.1 中,线程 A 先运行,并且获取到了 lock 这个锁,当线程 A 运行 functionA 函数的时候中断发生了,中断抢走了 CPU 使用权。右边的中断服务函数也要获取 lock 这个锁,但是这个锁被线程 A 占有着,中断就会一直自旋,等待锁有效。但是在中断服务函数执行完之前,线程 A 是不可能执行的,线程 A 说“你先放手”,中断说“你先放手”,场面就这么僵持着,死锁发生!

最好的解决方法就是获取锁之前关闭本地中断, Linux 内核提供了相应的 API 函数,如下表所示

函数描述
void spin_lock_irq(spinlock_t *lock)禁止本地中断,并获取自旋锁。
void spin_unlock_irq(spinlock_t *lock)激活本地中断,并释放自旋锁。
void spin_lock_irqsave(spinlock_t *lock, unsigned long flags)保存中断状态,禁止本地中断,并获取自旋锁。
void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)将中断状态恢复到以前的状态,并且激活本地中断,释放自旋锁。

使用 spin_lock_irq/spin_unlock_irq 的时候需要用户能够确定加锁之前的中断状态,但实际上内核很庞大,运行也是“千变万化”,我们是很难确定某个时刻的中断状态,因此不推荐使用spin_lock_irq/spin_unlock_irq。建议使用 spin_lock_irqsave/spin_unlock_irqrestore,因为这一组函数会保存中断状态,在释放锁的时候会恢复中断状态。一般在线程中使用 spin_lock_irqsave/spin_unlock_irqrestore,在中断中使用 spin_lock/spin_unlock,示例代码如下所示:

1 DEFINE_SPINLOCK(lock) /* 定义并初始化一个锁 */
2
3
/* 线程 A */
4 void functionA (){
5         unsigned long flags; /* 中断状态 */
6         spin_lock_irqsave(&lock, flags) /* 获取锁 */
7         /* 临界区 */
8         spin_unlock_irqrestore(&lock, flags) /* 释放锁 */
9 }
10
11 /* 中断服务函数 */
12 void irq() {
13         spin_lock(&lock) /* 获取锁 */
14         /* 临界区 */
15         spin_unlock(&lock) /* 释放锁 */
16 }

下半部(BH)也会竞争共享资源,有些资料也会将下半部叫做底半部。关于下半部后面的章节会讲解,如果要在下半部里面使用自旋锁,可以使用下表中的 API 函数:

函数描述
void spin_lock_bh(spinlock_t *lock) 关闭下半部,并获取自旋锁。
void spin_unlock_bh(spinlock_t *lock)打开下半部,并释放自旋锁。

2.2.3 其它类型的锁

在自旋锁的基础上还衍生出了其他特定场合使用的锁,这些锁在驱动中其实用的不多,更多的是在 Linux 内核中使用,本节我们简单来了解一下这些衍生出来的锁。

1、读写自旋锁

现在有个学生信息表,此表存放着学生的年龄、家庭住址、班级等信息,此表可以随时被修改和读取。此表肯定是数据,那么必须要对其进行保护,如果我们现在使用自旋锁对其进行保护。每次只能一个读操作或者写操作,但是,实际上此表是可以并发读取的。只需要保证在修改此表的时候没人读取,或者在其他人读取此表的时候没有人修改此表就行了。也就是此表的读和写不能同时进行,但是可以多人并发的读取此表。

像这样,当某个数据结构符合读/写或生产者/消费者模型的时候就可以使用读写自旋锁。

读写自旋锁为读和写操作提供了不同的锁,一次只能允许一个写操作,也就是只能一个线程持有写锁,而且不能进行读操作。但是当没有写操作的时候允许一个或多个线程持有读锁,可以进行并发的读操作。 Linux 内核使用 rwlock_t 结构体表示读写锁,结构体定义如下(删除了
条件编译):

typedef struct {
    arch_rwlock_t raw_lock;
} rwlock_t;

读写锁操作 API 函数分为两部分,一个是给读使用的,一个是给写使用的,这些 API 函数如下表所示,

函数描述
DEFINE_RWLOCK(rwlock_t lock)定义并初始化读写锁
void rwlock_init(rwlock_t *lock)初始化读写锁。
读锁
void read_lock(rwlock_t *lock)获取读锁。
void read_unlock(rwlock_t *lock)释放读锁。
void read_lock_irq(rwlock_t *lock)禁止本地中断,并且获取读锁。
void read_unlock_irq(rwlock_t *lock)打开本地中断,并且释放读锁。
void read_lock_irqsave(rwlock_t *lock, unsigned long flags)保存中断状态,禁止本地中断,并获取读锁。
void read_unlock_irqrestore(rwlock_t *lock, unsigned long flags)将中断状态恢复到以前的状态,并且激活本地中断,释放读锁。
void read_lock_bh(rwlock_t *lock)关闭下半部,并获取读锁。
void read_unlock_bh(rwlock_t *lock)打开下半部,并释放读锁。
写锁
void write_lock(rwlock_t *lock)获取写锁。
void write_unlock(rwlock_t *lock)释放写锁。
void write_lock_irq(rwlock_t *lock)禁止本地中断,并且获取写锁。
void write_unlock_irq(rwlock_t *lock)打开本地中断,并且释放写锁。
void write_lock_irqsave(rwlock_t *lock, unsigned long flags)保存中断状态,禁止本地中断,并获取写锁。
void write_unlock_irqrestore(rwlock_t *lock, unsigned long flags)将中断状态恢复到以前的状态,并且激活本地中断,释放读锁。
void write_lock_bh(rwlock_t *lock)关闭下半部,并获取读锁。
void write_unlock_bh(rwlock_t *lock) 打开下半部,并释放读锁。

2、顺序锁

顺序锁在读写锁的基础上衍生而来的,使用读写锁的时候读操作和写操作不能同时进行。使用顺序锁的话可以允许在写的时候进行读操作,也就是实现同时读写,但是不允许同时进行并发的写操作。虽然顺序锁的读和写操作可以同时进行,但是如果在读的过程中发生了写操作,最好重新进行读取,保证数据完整性。顺序锁保护的资源不能是指针,因为如果在写操作的时候可能会导致指针无效,而这个时候恰巧有读操作访问指针的话就可能导致意外发生,比如读取野指针导致系统崩溃。 Linux 内核使用 seqlock_t 结构体表示顺序锁,结构体定义如下:

typedef struct {
    struct seqcount seqcount;
    spinlock_t lock;
} seqlock_t;

关于顺序锁的 API 函数如下表所示:

函数描述
DEFINE_SEQLOCK(seqlock_t sl)定义并初始化顺序锁
void seqlock_ini seqlock_t *sl)初始化顺序锁。
顺序锁写操作
void write_seqlock(seqlock_t *sl)获取写顺序锁。
void write_sequnlock(seqlock_t *sl)释放写顺序锁。
void write_seqlock_irq(seqlock_t *sl)禁止本地中断,并且获取写顺序锁
void write_sequnlock_irq(seqlock_t *sl)打开本地中断,并且释放写顺序锁。
void write_seqlock_irqsave(seqlock_t *sl, unsigned long flags)保存中断状态,禁止本地中断,并获取写顺序锁。
void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)将中断状态恢复到以前的状态,并且激活本地中断,释放写顺序锁。
void write_seqlock_bh(seqlock_t *sl)关闭下半部,并获取写读锁。
void write_sequnlock_bh(seqlock_t *sl)打开下半部,并释放写读锁。
顺序锁读操作
unsigned read_seqbegin(const seqlock_t *sl)读单元访问共享资源的时候调用此函数,此函数会返回顺序锁的顺序号。
unsigned read_seqretry(const seqlock_t *sl, unsigned start)读结束以后调用此函数检查在读的过程中有没有对资源进行写操作,如果有的话就要重读

2.2.4 自旋锁使用注意事项

综合前面关于自旋锁的信息,我们需要在使用自旋锁的时候要注意一下几点:

1、因为在等待自旋锁的时候处于“自旋”状态,因此锁的持有时间不能太长,一定要短,否则的话会降低系统性能。如果临界区比较大,运行时间比较长的话要选择其他的并发处理方式,比如稍后要讲的信号量和互斥体。
2、自旋锁保护的临界区内不能调用任何可能导致线程休眠的 API 函数,否则的话可能导致死锁。
3、不能递归申请自旋锁,因为一旦通过递归的方式申请一个你正在持有的锁,那么你就必须“自旋”,等待锁被释放,然而你正处于“自旋”状态,根本没法释放锁。结果就是自己把自己锁死了!
4、在编写驱动程序的时候我们必须考虑到驱动的可移植性,因此不管你用的是单核的还是多核的 SOC,都将其当做多核 SOC 来编写驱动程序。

2.3 信号量

2.3.1 信号量简介

大家如果有学习过 FreeRTOS 或者 UCOS 的话就应该对信号量很熟悉,因为信号量是同步的一种方式。 Linux 内核也提供了信号量机制,信号量常常用于控制对共享资源的访问。

举一个很常见的例子,某个停车场有 100 个停车位,这 100 个停车位大家都可以用,对于大家来说这100 个停车位就是共享资源。假设现在这个停车场正常运行,你要把车停到这个这个停车场肯定要先看一下现在停了多少车了?还有没有停车位?当前停车数量就是一个信号量,具体的停车数量就是这个信号量值,当这个值到 100 的时候说明停车场满了。停车场满的时你可以等一会看看有没有其他的车开出停车场,当有车开出停车场的时候停车数量就会减一,也就是说信号量减一,此时你就可以把车停进去了,你把车停进去以后停车数量就会加一,也就是信号量加一。这就是一个典型的使用信号量进行共享资源管理的案例,在这个案例中使用的就是计数型信号量。

相比于自旋锁,信号量可以使线程进入休眠状态,比如 A 与 B、 C 合租了一套房子,这个房子只有一个厕所,一次只能一个人使用。某一天早上 A 去上厕所了,过了一会 B 也想用厕所,因为 A 在厕所里面,所以 B 只能等到 A 用来了才能进去。 B 要么就一直在厕所门口等着,等 A 出来,这个时候就相当于自旋锁。 B 也可以告诉 A,让 A 出来以后通知他一下,然后 B 继续回房间睡觉,这个时候相当于信号量。

可以看出,使用信号量会提高处理器的使用效率,毕竟不用一直傻乎乎的在那里“自旋”等待。但是,信号量的开销要比自旋锁大,因为信号量使线程进入休眠状态以后会切换线程,切换线程就会有开销。总结一下信号量的特点:

1、因为信号量可以使等待资源线程进入休眠状态,因此适用于那些占用资源比较久的场合。
2、因此信号量不能用于中断中,因为信号量会引起休眠,中断不能休眠。
3、如果共享资源的持有时间比较短,那就不适合使用信号量了,因为频繁的休眠、切换线程引起的开销要远大于信号量带来的那点优势。

信号量有一个信号量值,相当于一个房子有 10 把钥匙,这 10 把钥匙就相当于信号量值为10。因此,可以通过信号量来控制访问共享资源的访问数量,如果要想进房间,那就要先获取一把钥匙,信号量值减 1,直到 10 把钥匙都被拿走,信号量值为 0,这个时候就不允许任何人进入房间了,因为没钥匙了。如果有人从房间出来,那他要归还他所持有的那把钥匙,信号量值加 1,此时有 1 把钥匙了,那么可以允许进去一个人。相当于通过信号量控制访问资源的线程数,在初始化的时候将信号量值设置的大于 1,那么这个信号量就是计数型信号量,计数型
信号量不能用于互斥访问,因为它允许多个线程同时访问共享资源。如果要互斥的访问共享资源那么信号量的值就不能大于 1,此时的信号量就是一个二值信号量。

2.3.2 信号量API函数

Linux 内核使用 semaphore 结构体表示信号量,结构体内容如下所示:

struct semaphore {
    raw_spinlock_t lock;
    unsigned int count;
    struct list_head wait_list;
};

要想使用信号量就得先定义,然后初始化信号量。有关信号量的 API 函数如下表所示:

函数描述
DEFINE_SEAMPHORE(name)定义一个信号量,并且设置信号量的值为 1。
void sema_init(struct semaphore *sem, int val)初始化信号量 sem,设置信号量值为 val。
void down(struct semaphore *sem)获取信号量,因为会导致休眠,因此不能在中断中使用。
int down_trylock(struct semaphore *sem)尝试获取信号量,如果能获取到信号量就获取,并且返回 0。如果不能就返回非 0,并且不会进入休眠。
int down_interruptible(struct semaphore *sem)获取信号量,和 down 类似,只是使用 down 进入休眠状态的线程不能被信号打断。而使用此函数进入休眠以后是可以被信号打断的。
void up(struct semaphore *sem)释放信号量

信号量的使用如下所示:

struct semaphore sem; /* 定义信号量 */
sema_init(&sem, 1); /* 初始化信号量 */
down(&sem); /* 申请信号量 */
/* 临界区 */
up(&sem); /* 释放信号量 */

2.4 互斥体

2.4.1 互斥体简介

在 FreeRTOS 和 UCOS 中也有互斥体,将信号量的值设置为 1 就可以使用信号量进行互斥访问了,虽然可以通过信号量实现互斥,但是 Linux 提供了一个比信号量更专业的机制来进行互斥,它就是互斥体—mutex。互斥访问表示一次只有一个线程可以访问共享资源,不能递归申请互斥体。在我们编写 Linux 驱动的时候遇到需要互斥访问的地方建议使用 mutex。

使用 mutex 结构体表示互斥体,定义如下(省略条件编译部分):

struct mutex {
    /* 1: unlocked, 0: locked, negative: locked, possible waiters */
    atomic_t count;
    spinlock_t wait_lock;
};

在使用 mutex 之前要先定义一个 mutex 变量。在使用 mutex 的时候要注意如下几点:
1、 mutex 可以导致休眠,因此不能在中断中使用 mutex,中断中只能使用自旋锁。
2、和信号量一样, mutex 保护的临界区可以调用引起阻塞的 API 函数。
3、因为一次只有一个线程可以持有 mutex,因此,必须由 mutex 的持有者释放 mutex。并
且 mutex 不能递归上锁和解锁。

2.4.2 互斥体API函数

有关互斥体的 API 函数如下表所示:

函数描述
DEFINE_MUTEX(name)定义并初始化一个 mutex 变量。
void mutex_init(mutex *lock)初始化 mutex。
void mutex_lock(struct mutex *lock)获取 mutex,也就是给 mutex 上锁。如果获取不到就进休眠。
void mutex_unlock(struct mutex *lock)释放 mutex,也就给 mutex 解锁。
int mutex_trylock(struct mutex *lock)尝试获取 mutex,如果成功就返回 1,如果失败就返回 0。
int mutex_is_locked(struct mutex *lock)判断 mutex 是否被获取,如果是的话就返回1,否则返回 0。
int mutex_lock_interruptible(struct mutex *lock)使用此函数获取信号量失败进入休眠以后可以被信号打断。

互斥体的使用如下所示:

1 struct mutex lock; /* 定义一个互斥体 */
2 mutex_init(&lock); /* 初始化互斥体 */
3
4 mutex_lock(&lock); /* 上锁 */
5 /* 临界区 */
6 mutex_unlock(&lock); /* 解锁 */

关于 Linux 中的并发和竞争就讲解到这里, Linux 内核还有很多其他的处理并发和竞争的机制,本章我们主要讲解了常用的原子操作、自旋锁、信号量和互斥体。以后我们在编写 Linux驱动的时候就会频繁的使用到这几种机制,希望大家能够深入理解这几个常用的机制。

3. Linux并发与竞争实验

  1. 并发与竞争--原子变量
  2. 并发与竞争--spinlock
  3. 并发与竞争--信号量
  4. 并发与竞争--mutex
0

评论 (0)

取消