首页
chatGPT
关于
友链
其它
统计
更多
壁纸
留言
Search
1
cgroup--(4)cgroup v1和cgroup v2的详细介绍
6,378 阅读
2
修改Linux Kernel defconfig的标准方法
6,375 阅读
3
Android系统之VINTF(1)manifests&compatibility matrices
5,953 阅读
4
使用git生成patch和应用patch
3,441 阅读
5
c语言的__attribute__
3,165 阅读
默认分类
文章收集
学习总结
算法
环境配置
知识点
入门系列
vim
shell
Git
Make
Android
Linux
Linux命令
内存管理
Linux驱动
Language
C++
C
工具
软件工具
Bug
COMPANY
登录
Search
标签搜索
shell
Linux
c
uboot
Vim
vintf
Linux驱动
Android
device_tree
git
DEBUG
arm64
链表
数据结构
IDR
内核
ELF
gcc
ARM
网址
adtxl
累计撰写
365
篇文章
累计收到
14
条评论
首页
栏目
默认分类
文章收集
学习总结
算法
环境配置
知识点
入门系列
vim
shell
Git
Make
Android
Linux
Linux命令
内存管理
Linux驱动
Language
C++
C
工具
软件工具
Bug
COMPANY
页面
chatGPT
关于
友链
其它
统计
壁纸
留言
搜索到
1
篇与
的结果
2020-08-12
Linux内核中链表list文件结构分析
1. 函数原型内核中的链表结构如下,只有前后两个指针,没有数据项,可以很方便的构成双向链表struct list_head { struct list_head *next, *prev; };1.1. static inline void INIT_LIST_HEAD(struct list_head *list)运行的时候初始化链表,两个指针都指向结点自己的地址static inline void INIT_LIST_HEAD(struct list_head *list) { WRITE_ONCE(list->next, list); list->prev = list; }1.2. static inline void list_add(struct list_head new, struct list_head head);从指定结点后面插入一个结点,new为要插入的新节点的地址,head为要插入的结点,新结点从head结点后面插入/** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void list_add(struct list_head *new, struct list_head *head) { __list_add(new, head, head->next); }其中,__list_add()函数定义如下,在知道前后结点的情况下,插入结点/* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { if (!__list_add_valid(new, prev, next)) return; next->prev = new; new->next = next; new->prev = prev; WRITE_ONCE(prev->next, new); }1.3. static inline void list_add_tail(struct list_head new, struct list_head head)从链表尾部插入结点/** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); }1.4. static inline void list_del(struct list_head *entry)两个宏定义,删除下来的prev、next指针指向这两个特殊值,这样设置是为了保证不在链表中的结点项不可访问--对LIST_POISON1和LIST_POISON2的访问都将引起页故障。 /* * These are non-NULL pointers that will result in page faults * under normal circumstances, used to verify that nobody uses * non-initialized list entries. */ #define LIST_POISON1 ((void *) 0x100 + POISON_POINTER_DELTA) #define LIST_POISON2 ((void *) 0x122 + POISON_POINTER_DELTA)static inline void list_del(struct list_head *entry) { __list_del_entry(entry); entry->next = LIST_POISON1; entry->prev = LIST_POISON2; }其中__list_del_entry()函数定义如下:/* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; WRITE_ONCE(prev->next, next); } /* * Delete a list entry and clear the 'prev' pointer. * * This is a special-purpose list clearing method used in the networking code * for lists allocated as per-cpu, where we don't want to incur the extra * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this * needs to check the node 'prev' pointer instead of calling list_empty(). */ static inline void __list_del_clearprev(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->prev = NULL; } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */ static inline void __list_del_entry(struct list_head *entry) { if (!__list_del_entry_valid(entry)) return; __list_del(entry->prev, entry->next); }1.5. static inline void list_replace(struct list_head old,struct list_head new)替换链表中的结点,/** * list_replace - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace(struct list_head *old, struct list_head *new) { new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new; }1.6. static inline void list_replace_init(struct list_head old,struct list_head new)替换,将被替换的结点初始化为一个新链表static inline void list_replace_init(struct list_head *old, struct list_head *new) { list_replace(old, new); INIT_LIST_HEAD(old); }1.7. static inline void list_swap(struct list_head entry1,struct list_head entry2)交换两个结点/** * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position * @entry1: the location to place entry2 * @entry2: the location to place entry1 */ static inline void list_swap(struct list_head *entry1, struct list_head *entry2) { struct list_head *pos = entry2->prev; list_del(entry2); list_replace(entry1, entry2); if (pos == entry1) pos = entry2; list_add(entry1, pos); } 1.8. static inline void list_del_init(struct list_head *entry)删除一项并初始化/** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ static inline void list_del_init(struct list_head *entry) { __list_del_entry(entry); INIT_LIST_HEAD(entry); }1.9. static inline void list_move(struct list_head list, struct list_head head)搬移操作,将原本属于链表的一个结点移动到另一个链表的操作/** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ static inline void list_move(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add(list, head); }1.10. static inline void list_move_tail(struct list_head list,struct list_head head)/** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ static inline void list_move_tail(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add_tail(list, head); }1.11. static inline void list_bulk_move_tail(struct list_head head, struct list_head first, struct list_head *last)/** * list_bulk_move_tail - move a subsection of a list to its tail * @head: the head that will follow our entry * @first: first entry to move * @last: last entry to move, can be the same as first * * Move all entries between @first and including @last before @head. * All three entries must belong to the same linked list. */ static inline void list_bulk_move_tail(struct list_head *head, struct list_head *first, struct list_head *last) { first->prev->next = last->next; last->next->prev = first->prev; head->prev->next = first; first->prev = head->prev; last->next = head; head->prev = last; } 1.12. static inline int list_is_first(const struct list_head list,const struct list_head head)判断结点是否为首结点/** * list_is_first -- tests whether @list is the first entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_first(const struct list_head *list, const struct list_head *head) { return list->prev == head; }1.13. static inline int list_is_last(const struct list_head list, const struct list_head head)判断结点是否为尾结点/** * list_is_last - tests whether @list is the last entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_last(const struct list_head *list, const struct list_head *head) { return list->next == head; }1.14. static inline int list_empty(const struct list_head *head)判断是否是一个空链表/** * list_empty - tests whether a list is empty * @head: the list to test. */ static inline int list_empty(const struct list_head *head) { return READ_ONCE(head->next) == head; }1.15. static inline int list_empty_careful(const struct list_head *head)/** * list_empty_careful - tests whether a list is empty and not being modified * @head: the list to test * * Description: * tests whether a list is empty _and_ checks that no other CPU might be * in the process of modifying either member (next or prev) * * NOTE: using list_empty_careful() without synchronization * can only be safe if the only activity that can happen * to the list entry is list_del_init(). Eg. it cannot be used * if another CPU could re-list_add() it. */ static inline int list_empty_careful(const struct list_head *head) { struct list_head *next = head->next; return (next == head) && (next == head->prev); }1.16. static inline void list_rotate_left(struct list_head *head)翻转链表/** * list_rotate_left - rotate the list to the left * @head: the head of the list */ static inline void list_rotate_left(struct list_head *head) { struct list_head *first; if (!list_empty(head)) { first = head->next; list_move_tail(first, head); } } 1.17. static inline void list_rotate_to_front(struct list_head list,struct list_head head)/** * list_rotate_to_front() - Rotate list to specific item. * @list: The desired new front of the list. * @head: The head of the list. * * Rotates list so that @list becomes the new front of the list. */ static inline void list_rotate_to_front(struct list_head *list, struct list_head *head) { /* * Deletes the list head from the list denoted by @head and * places it as the tail of @list, this effectively rotates the * list so that @list is at the front. */ list_move_tail(head, list); }1.18. static inline int list_is_singular(const struct list_head *head)判断一个链表是否只有一项/** * list_is_singular - tests whether a list has just one entry. * @head: the list to test. */ static inline int list_is_singular(const struct list_head *head) { return !list_empty(head) && (head->next == head->prev); } 1.19. static inline void list_cut_position(struct list_head list,struct list_head head, struct list_head *entry)将一个链表拆分为两个/** * list_cut_position - cut a list into two * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * and if so we won't cut the list * * This helper moves the initial part of @head, up to and * including @entry, from @head to @list. You should * pass on @entry an element you know is on @head. @list * should be an empty list or a list you do not care about * losing its data. * */ static inline void list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { if (list_empty(head)) return; if (list_is_singular(head) && (head->next != entry && head != entry)) return; if (entry == head) INIT_LIST_HEAD(list); else __list_cut_position(list, head, entry); }1.20. static inline void list_cut_before(struct list_head list,struct list_head head,struct list_head *entry)/** * list_cut_before - cut a list into two, before given entry * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * * This helper moves the initial part of @head, up to but * excluding @entry, from @head to @list. You should pass * in @entry an element you know is on @head. @list should * be an empty list or a list you do not care about losing * its data. * If @entry == @head, all entries on @head are moved to * @list. */ static inline void list_cut_before(struct list_head *list, struct list_head *head, struct list_head *entry) { if (head->next == entry) { INIT_LIST_HEAD(list); return; } list->next = head->next; list->next->prev = list; list->prev = entry->prev; list->prev->next = list; head->next = entry; entry->prev = head; }1.21. static inline void list_splice(const struct list_head list,struct list_head head)连接两个链表/** * list_splice - join two lists, this is designed for stacks * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice(const struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head, head->next); }1.22. static inline void list_splice_tail(struct list_head list,struct list_head head)/** * list_splice_tail - join two lists, each list being a queue * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice_tail(struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head->prev, head); }1.23. static inline void list_splice_init(struct list_head list, struct list_head head)/** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ static inline void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head, head->next); INIT_LIST_HEAD(list); } }1.24. static inline void list_splice_tail_init(struct list_head list, struct list_head head)/** * list_splice_tail_init - join two lists and reinitialise the emptied list * @list: the new list to add. * @head: the place to add it in the first list. * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void list_splice_tail_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head->prev, head); INIT_LIST_HEAD(list); } }2. 使用的宏定义2.1. LIST_HEAD_INIT#define LIST_HEAD_INIT(name) { &(name), &(name) }2.2. LIST_HEAD#define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) 2.3. list_entry#define list_entry(ptr, type, member) \ container_of(ptr, type, member)2.4. list_first_entry#define list_first_entry(ptr, type, member) \ list_entry((ptr)->next, type, member)2.5. list_last_entry#define list_last_entry(ptr, type, member) \ list_entry((ptr)->prev, type, member)2.6. list_first_entry_or_null#define list_first_entry_or_null(ptr, type, member) ({ \ struct list_head *head__ = (ptr); \ struct list_head *pos__ = READ_ONCE(head__->next); \ pos__ != head__ ? list_entry(pos__, type, member) : NULL; \ })2.7. list_next_entry#define list_next_entry(pos, member) \ list_entry((pos)->member.next, typeof(*(pos)), member)2.8. list_prev_entry#define list_prev_entry(pos, member) \ list_entry((pos)->member.prev, typeof(*(pos)), member)2.9. list_for_each#define list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next)2.10. list_for_each_prev#define list_for_each_prev(pos, head) \ for (pos = (head)->prev; pos != (head); pos = pos->prev)2.11. list_for_each_safe#define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next)2.12. list_for_each_prev_safe#define list_for_each_prev_safe(pos, n, head) \ for (pos = (head)->prev, n = pos->prev; \ pos != (head); \ pos = n, n = pos->prev)2.13. list_for_each_entry#define list_for_each_entry(pos, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member); \ &pos->member != (head); \ pos = list_next_entry(pos, member))2.14. list_for_each_entry_reverse#define list_for_each_entry_reverse(pos, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member); \ &pos->member != (head); \ pos = list_prev_entry(pos, member))2.15. list_prepare_entry#define list_prepare_entry(pos, head, member) \ ((pos) ? : list_entry(head, typeof(*pos), member))2.16. list_for_each_entry_continue#define list_for_each_entry_continue(pos, head, member) \ for (pos = list_next_entry(pos, member); \ &pos->member != (head); \ pos = list_next_entry(pos, member))2.17. list_for_each_entry_from_reverse#define list_for_each_entry_from_reverse(pos, head, member) \ for (; &pos->member != (head); \ pos = list_prev_entry(pos, member))2.18. list_for_each_entry_safe#define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member), \ n = list_next_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_next_entry(n, member))2.19. list_for_each_entry_safe_continue#define list_for_each_entry_safe_continue(pos, n, head, member) \ for (pos = list_next_entry(pos, member), \ n = list_next_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_next_entry(n, member))2.20. list_for_each_entry_safe_from#define list_for_each_entry_safe_from(pos, n, head, member) \ for (n = list_next_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_next_entry(n, member))2.21. list_for_each_entry_safe_reverse#define list_for_each_entry_safe_reverse(pos, n, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member), \ n = list_prev_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_prev_entry(n, member))2.22. list_safe_reset_next#define list_safe_reset_next(pos, n, member) \ n = list_next_entry(pos, member)
2020年08月12日
866 阅读
0 评论
0 点赞