[正点原子]Linux驱动学习笔记--15.Linux自带LED驱动实验

adtxl
2022-10-22 / 0 评论 / 568 阅读 / 正在检测是否收录...

前面我们都是自己编写 LED 灯驱动,其实像 LED 灯这样非常基础的设备驱动, Linux 内核已经集成了。 Linux 内核的 LED 灯驱动采用 platform 框架,因此我们只需要按照要求在设备树文件中添加相应的 LED 节点即可,本章我们就来学习如何使用 Linux 内核自带的 LED 驱动来驱动 I.MX6U-ALPHA 开发板上的 LED0。

1. Linux 内核自带 LED 驱动使能

上一章节我们编写基于设备树的 platform LED 灯驱动,其实 Linux 内核已经自带了 LED 灯驱动,要使用 Linux 内核自带的 LED 灯驱动首先得先配置 Linux 内核,使能自带的 LED 灯驱动。需要打开下面这个config

CONFIG_LEDS_GPIO=y

2. Linux 内核自带 LED 驱动简介

2.1 LED 灯驱动框架分析

LED 灯驱动文件为/drivers/leds/leds-gpio.c,大家可以打开/drivers/leds/Makefile 这个文件,找到如下所示内容:

2 # LED Core
3 obj-$(CONFIG_NEW_LEDS) += led-core.o
.....
23 obj-$(CONFIG_LEDS_GPIO_REGISTER) += leds-gpio-register.o
24 obj-$(CONFIG_LEDS_GPIO) += leds-gpio.o
25 obj-$(CONFIG_LEDS_LP3944) += leds-lp3944.o
......

第 24 行,如果定义了 CONFIG_LEDS_GPIO 的话就会编译 leds-gpio.c 这个文件,在上一小节我们选择将 LED 驱动编译进 Linux 内核,在.config 文件中就会有“CONFIG_LEDS_GPIO=y”这一行,因此 leds-gpio.c 驱动文件就会被编译。

接下来我们看一下 leds-gpio.c 这个驱动文件,找到如下所示内容:

236 static const struct of_device_id of_gpio_leds_match[] = {
237     { .compatible = "gpio-leds", },
238     {},
239 };
......
290 static struct platform_driver gpio_led_driver = {
291     .probe = gpio_led_probe,
292     .remove = gpio_led_remove,
293     .driver = {
294     .name = "leds-gpio",
295     .of_match_table = of_gpio_leds_match,
296     },
297 };
298
299 module_platform_driver(gpio_led_driver);

第 236~239 行, LED 驱动的匹配表,此表只有一个匹配项, compatible 内容为“gpio-leds”,因此设备树中的 LED 灯设备节点的 compatible 属性值也要为“gpio-leds”,否则设备和驱动匹配不成功,驱动就没法工作。
第 290~296 行, platform_driver 驱动结构体变量,可以看出, Linux 内核自带的 LED 驱动采用了 platform 框架。第 291 行可以看出 probe 函数为 gpio_led_probe,因此当驱动和设备匹配成功以后 gpio_led_probe 函数就会执行。从 294 行可以看出,驱动名字为“leds-gpio”,因此会在/sys/bus/platform/drivers 目录下存在一个名为“leds-gpio”的文件.
第 299 行通过 module_platform_driver 函数向 Linux 内核注册 gpio_led_driver 这个 platform
驱动。

2.2 module_platform_driver 函数简析

在上一小节中我们知道 LED 驱动会采用 module_platform_driver 函数向 Linux 内核注册platform 驱动,其实在 Linux 内核中会大量采用 module_platform_driver 来完成向 Linux 内核注册 platform 驱动的操作。 module_platform_driver 定义在 include/linux/platform_device.h 文件中,为一个宏,定义如下:

221 #define module_platform_driver(__platform_driver) \
222     module_driver(__platform_driver, platform_driver_register, \
223         platform_driver_unregister)

可以看出, module_platform_driver 依赖 module_driver, module_driver 也是一个宏,定义在include/linux/device.h 文件中,内容如下:

1260 #define module_driver(__driver, __register, __unregister, ...) \
1261 static int __init __driver##_init(void) \
1262 { \
1263     return __register(&(__driver) , ##__VA_ARGS__); \
1264 } \
1265 module_init(__driver##_init); \
1266 static void __exit __driver##_exit(void) \
1267 {
1268     __unregister(&(__driver) , ##__VA_ARGS__); \
1269 } \
1270 module_exit(__driver##_exit);

将module_platform_driver(gpio_led_driver)展开以后就是:

static int __init gpio_led_driver_init(void)
{
    return platform_driver_register (&(gpio_led_driver));
}
module_init(gpio_led_driver_init);

static void __exit gpio_led_driver_exit(void)
{
    platform_driver_unregister (&(gpio_led_driver) );
}
module_exit(gpio_led_driver_exit);

上面的代码不就是标准的注册和删除 platform 驱动吗?因此 module_platform_driver 函数的功能就是完成 platform 驱动的注册和删除。

2.3 gpio_led_probe 函数简析

当驱动和设备匹配以后 gpio_led_probe 函数就会执行,此函数主要是从设备树中获取 LED灯的 GPIO 信息,缩减后的函数内容如下所示:

243 static int gpio_led_probe(struct platform_device *pdev)
244 {
245     struct gpio_led_platform_data *pdata =
                                dev_get_platdata(&pdev->dev);
246     struct gpio_leds_priv *priv;
247     int i, ret = 0;
248
249     if (pdata && pdata->num_leds) { /* 非设备树方式 */
            /* 获取 platform_device 信息 */
            ......
268     } else { /* 采用设备树 */
269         priv = gpio_leds_create(pdev);
270     if (IS_ERR(priv))
271     return PTR_ERR(priv);
272 }
273
274 platform_set_drvdata(pdev, priv);
275
276 return 0;
277 }

第 269~271 行,如果使用设备树的话,使用 gpio_leds_create 函数从设备树中提取设备信息,获取到的 LED 灯 GPIO 信息保存在返回值中, gpio_leds_create 函数内容如下:

167 static struct gpio_leds_priv *gpio_leds_create(struct platform_device *pdev)
168 {
169     struct device *dev = &pdev->dev;
170     struct fwnode_handle *child;
171     struct gpio_leds_priv *priv;
172     int count, ret;
173     struct device_node *np;
174
175     count = device_get_child_node_count(dev);
176     if (!count)
177         return ERR_PTR(-ENODEV);
178
179     priv = devm_kzalloc(dev, sizeof_gpio_leds_priv(count), GFP_KERNEL);
180     if (!priv)
181         return ERR_PTR(-ENOMEM);
182
183     device_for_each_child_node(dev, child) {
184     struct gpio_led led = {};
185     const char *state = NULL;
186
187     led.gpiod = devm_get_gpiod_from_child(dev, NULL, child);
188     if (IS_ERR(led.gpiod)) {
189         fwnode_handle_put(child);
190         ret = PTR_ERR(led.gpiod);
191         goto err;
192     }
193
194     np = of_node(child);
195
196     if (fwnode_property_present(child, "label")) {
197         fwnode_property_read_string(child, "label", &led.name);
198     } else {
199         if (IS_ENABLED(CONFIG_OF) && !led.name && np)
200             led.name = np->name;
201         if (!led.name)
202             return ERR_PTR(-EINVAL);
203     }
204     fwnode_property_read_string(child, "linux,default-trigger",
205                         &led.default_trigger);
206
207     if (!fwnode_property_read_string(child, "default-state",
208                                 &state)) {
209     if (!strcmp(state, "keep"))
210         led.default_state = LEDS_GPIO_DEFSTATE_KEEP;
211     else if (!strcmp(state, "on"))
212         led.default_state = LEDS_GPIO_DEFSTATE_ON;
213     else
214         led.default_state = LEDS_GPIO_DEFSTATE_OFF;
215     }
216
217     if (fwnode_property_present(child, "retain-state-suspended"))
218         led.retain_state_suspended = 1;
219
220     ret = create_gpio_led(&led, &priv->leds[priv->num_leds++],
221                             dev, NULL);
222     if (ret < 0) {
223         fwnode_handle_put(child);
224         goto err;
225     }
226 }
227
228     return priv;
229
230 err:
231     for (count = priv->num_leds - 2; count >= 0; count--)
232         delete_gpio_led(&priv->leds[count]);
233     return ERR_PTR(ret);
234 }

第 175 行,调用 device_get_child_node_count 函数统计子节点数量,一般在在设备树中创建一个节点表示 LED 灯,然后在这个节点下面为每个 LED 灯创建一个子节点。因此子节点数量也是 LED 灯的数量。
第 183 行,遍历每个子节点,获取每个子节点的信息。
第 187 行,获取 LED 灯所使用的 GPIO 信息。
第 196~197 行,读取子节点 label 属性值,因为使用 label 属性作为 LED 的名字。
第 204~205 行,获取“linux,default-trigger”属性值,可以通过此属性设置某个 LED 灯在Linux 系统中的默认功能,比如作为系统心跳指示灯等等。
第 207~215 行,获取“default-state”属性值,也就是 LED 灯的默认状态属性。
第 220 行,调用 create_gpio_led 函数创建 LED 相关的 io,其实就是设置 LED 所使用的 io为输出之类的。 create_gpio_led 函数主要是初始化 led_dat 这个 gpio_led_data 结构体类型变量,led_dat 保存了 LED 的操作函数等内容。

关于 gpio_led_probe 函数就分析到这里, gpio_led_probe 函数主要功能就是获取 LED 灯的设备信息,然后根据这些信息来初始化对应的 IO,设置为输出等。

3. 设备树节点编写

打开文档 Documentation/devicetree/bindings/leds/leds-gpio.txt,此文档详细的讲解了 Linux 自带驱动对应的设备树节点该如何编写,我们在编写设备节点的时候要注意以下几点:

1、创建一个节点表示 LED 灯设备,比如 dtsleds,如果板子上有多个 LED 灯的话每个 LED灯都作为 dtsleds 的子节点。
2、 dtsleds 节点的 compatible 属性值一定要为“gpio-leds”。
3、设置 label 属性,此属性为可选,每个子节点都有一个 label 属性, label 属性一般表示LED 灯的名字,比如以颜色区分的话就是 red、 green 等等。
4、每个子节点必须要设置 gpios 属性值,表示此 LED 所使用的 GPIO 引脚!
5、可以设置“linux,default-trigger”属性值,也就是设置 LED 灯的默认功能,可以查阅Documentation/devicetree/bindings/leds/common.txt 这个文档来查看可选功能,比如:

backlight: LED 灯作为背光。
default-on: LED 灯打开
heartbeat: LED 灯作为心跳指示灯,可以作为系统运行提示灯。
ide-disk: LED 灯作为硬盘活动指示灯。
timer: LED 灯周期性闪烁,由定时器驱动,闪烁频率可以修改

6、可以设置“default-state”属性值,可以设置为 on、 off 或 keep,为 on 的时候 LED 灯默认打开,为 off 的话 LED 灯默认关闭,为 keep 的话 LED 灯保持当前模式。

根据上述几条要求在 imx6ull-alientek-emmc.dts 中添加如下所示 LED 灯设备节点:

1 dtsleds {
2         compatible = "gpio-leds";
3
4         led0 {
5             label = "red";
6             gpios = <&gpio1 3 GPIO_ACTIVE_LOW>;
7             default-state = "off";
8         };
9 };

因为 I.MX6U-ALPHA 开发板只有一个 LED0,因此在 dtsleds 这个节点下只有一个子节点led0, LED0 名字为 red,默认关闭。修改完成以后保存并重新编译设备树,然后用新的设备树启动开发板。

56.4 运行测试
用 新 的 zImage 和 imx6ull-alientek-emmc.dtb 启 动 开 发 板 , 启 动 以 后 查 看/sys/bus/platform/devices/dtsleds 这个目录是否存在,如果存在的话就如到此目录中,如图 56.4.1所示:

imagea23e83bedb2253ef.png

进入到 leds 目录中,此目录中的内容如图 56.4.2 所示:

image1e7cdb49ec5f6e24.png

从图 56.4.2 可以看出,在 leds 目录下有一个名为“red”子目录,这个子目录的名字就是我们在设备树中第 5 行设置的 label 属性值。
我们的设置究竟有没有用,最终是要通过测试才能知道的,首先查看一下系统中有没有“sys/class/leds/red/brightness”这个文件,如果有的话就输入如下命令打开 RED 这个 LED 灯:

echo 1 > /sys/class/leds/red/brightness //打开 LED0

关闭 RED 这个 LED 灯的命令如下:

echo 0 > /sys/class/leds/red/brightness //关闭 LED0

如果能正常的打开和关闭 LED 灯话就说明我们 Linux 内核自带的 LED 灯驱动工作正常。
我们一般会使用一个 LED 灯作为系统指示灯,系统运行正常的话这个 LED 指示灯就会一闪一闪的。里我们设置 LED0 作为系统指示灯,在 dtsleds 这个设备节点中加入“linux,default-trigger”属性信息即可,属性值为“heartbeat”,修改完以后的 dtsleds 节点内容如下:

1 dtsleds {
2         compatible = "gpio-leds";
3
4         led0 {
5             label = "red";
6             gpios = <&gpio1 3 GPIO_ACTIVE_LOW>;
7             linux,default-trigger = "heartbeat";
8             default-state = "on";
9         };
10 };

第 7 行,设置 LED0 为 heartbeat。
第 8 行,默认打开 LED0。
重新编译设备树并且使用新的设备树启动 Linux 系统,启动以后 LED0 就会闪烁,作为系统心跳指示灯,表示系统正在运行。

4. 运行测试

们在设备树中第 5 行设置的 label 属性值。
我们的设置究竟有没有用,最终是要通过测试才能知道的,首先查看一下系统中有没有“sys/class/leds/red/brightness”这个文件,如果有的话就输入如下命令打开 RED 这个 LED 灯:

echo 1 > /sys/class/leds/red/brightness //打开 LED0

关闭 RED 这个 LED 灯的命令如下:

echo 0 > /sys/class/leds/red/brightness //关闭 LED0

如果能正常的打开和关闭 LED 灯话就说明我们 Linux 内核自带的 LED 灯驱动工作正常。

0

评论 (0)

取消